

Golang at Blendle
All the e-mails! Ten minutes flat!

» Koen Bollen

Table of content

- About Blendle & Our Newsletter

- Enter Golang

- Our Challenges

- Go in production

- Tips ’n Tricks

About Blendle

Blendle Stack (quick overview)

- Core Backend: Ruby & Sinatra/Webmachine
- Frontend: Single Page JS, Native Apps
- Workflow: Bash/Ruby
- Microservices
- Cucumber BDD

- Infra: AWS, Docker & Kubernetes

http://nicholasjohnson.com/images/sections/ruby.png
https://www.python.org/static/apple-touch-icon-144x144-precomposed.png
http://ocpsoft.org/wp-content/uploads/2013/01/javascript_logo_unofficial-300x300.png
https://evbdn.eventbrite.com/s3-s3/eventlogos/17891475/cucumber.png

The Blendle Newsletter

- Editorial Powered, Daily Curated

- All personalized e-mail:
We sort articles for your reading profile

Features of our Mailer (Brains)

- Template Rendering
- Sending via Amazon Simple Email Service (SES)
- Selecting ±10 articles from a curated list of around 60
- Some Business Logics:

○ Allow for Must Reads by our staff
○ Avoid repetition of the same publisher
○ List articles for a user’s subscription first

Enter Golang
Why did we choose Golang?

Performance…

- Most Ruby/Sidekiq examples reach a throughput of
±40 messages per second. Which would make us run
for 83 hours.

- We require worst of both worlds:
○ Sorting article == CPU intensive
○ Sending mails == I/O intensive

- Celluloid or Eventmachine: Just

Then why Go?

- We needed high throughput in both sorting, rendering and sending

- Golang is a very small language, thus easy to learn and read

Then why Go?

- It’s just cool! (which is always a good measure for choosing tech)
○ <insert all reasons why golang is cool here>

Our Challenges

Scale

On thursday afternoon and the sunday overview we send an additional

250.000

350.000

Emails on weekday mornings

Time

And with the normal digest newsletter time is an important factor.

○ We can’t send it earlier due to the editorial part
○ The longer it takes, the more people are already at work

- Just go-routine all the things!
○ One go-routine for each user, then

just render and send the e-mail.

- Worked, on the Golang side of thing.
But we had major issues with available
sockets on the operating system.

- So…

Concurrency: First Attempt

Concurrency: Second Try

- Basic queue system:
○ Push users to a channel
○ Have a bunch of workers ready
○ Pass users to workers.

- Worked for a while, but then got
slower as our sorting/render speed
increased

Concurrency: Current Version

- We separated the render queue from the sending queue.
○ One pool of workers sort, render and prepare the SES

http request (this still uses the old system)

○ A new system is in place to handle the sending and
retrying of the request.

○ Dynamically growing worker count

06:59:38 mailer.go:115: info: mailer finalized, sent 248216 mails in 6m34.341153505s

06:07:03 mailer.go:115: info: mailer finalized, sent 342561 mails in 7m11.818600286s

Go in Production
CI + Deployment

Testing

- The Go `testing` package for unit testing and benchmarking code.

- Cucumber BDD for our integration and feature tests.
○ Using Ruby + Aruba, running our Go code as commands
○ Works well with other (non-golang) colleagues at Blendle

Docker

- Our mailer is ran in Docker containers.
○ Sometimes multiple containers when do AB tests.
○ Fired from a Ruby mailtool
○ Progress tracked in Redis

Wercker » Quay » `docker pull`

Continuous Deployment

- Difficult, seeing we only run production once a day

- Hourly Test
- When changing the mailing process code: Manually Benchmark

Tips ‘n Tricks
Some neat tricks we use

Profiling

```
pprof.StartCPUProfile(file)
defer pprof.StopCPUProfile()
```

https://github.com/uber/go-torch

https://github.com/uber/go-torch

Profiling

Runtime Tweaks
https://golang.org/pkg/runtime/

`GOGC=400`

`CGO_ENABLED=0` (if possible)

`-ldflags "-s -extldflags -static" -a -tags netgo`

https://golang.org/pkg/runtime/

